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Difference posets as generalizations of quantum logics, orthoalgebras, and 
effects are studied. Observables and measures generalizing normalized POV- 
measures and generalized measures on sets of effects are introduced. Character- 
ization of orthomodularity of subsets of a difference poset in terms of triangle 
closedness and regularity of these subsets enables us to characterize observables 
with a Boolean range. Boolean powers of difference posets are investigated; they 
have similar properties to that of tensor products, and their connection with 
quantum measurements is studied. 

1. I N T R O D U C T I O N  

For  the mathematical  foundat ions  o f  quan tum mechanics,  a Hilbert 
space model  plays, according to von N e u m a n n  (1932), an impor tan t  role, 
and we recall that  Mackey  (1963, Axiom VII  and p. 73) assumed that  the 
set o f  all quan tum mechanical  events is isomorphic  to the space o f  all closed 
subspaces, L(H) ,  of  a separable, complex, infinite-dimensional Hilbert  space 
H. In the historic paper  o f  Birkhoff  and von N e u m a n n  (1936), the not ion 
o f  quantum logics was introduced.  N o w  qua n tum logics generalize both  
models o f  classical mechanics,  Boo&an algebras [ = K o l m o g o r o v  (1933) 
model] and that  o f  Hilbert space qua n t um  mechanics. 

I f  L describes a proposi t ional  system o f  a physical system, then an 
observable is represented by a suitable morphism x f rom some a-algebra  ow 
o f  subsets o f  a nonvoid  set X into L;  preferably we use X = ~ and 5 p is the 
Borel a-a lgebra  ~ ( R )  o f  the real line R, or X = I~ n and 5 a = ~'(Rn), and a 
state o f  the system is characterized by an additive, a-addit ive or  completely 
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additive real-valued mapping on L. This in classical mechanics leads to 
measurable functions ( =  random variables) and in the Hilbert space model 
to self-adjoint operators, and probability measures or Gleason measures, 
respectively. 

More general structures, orthoalgebras, have been introduced by Ran- 
dall and Foulis (1979, 1981), and they enable one to introduce a tensor 
product of orthoalgebras (Foulis and Bennett, n.d.), which is an important 
tool for coupled systems. 

Events of quantum logics or orthoalgebras have a "yes-no" character 
and therefore they do not describe unsharp measurements. The effort to 
include them leads in Hilbert space quantum mechanics to the set of all 
effects (Busch et al., 1991), i.e., to the set g(H) of all Hermitian operators 
with spectra in the interval [0, 1]. Then "yes-no" events, i.e., those having 
spectrum in the two-point set {0, 1}, correspond to orthogonal projection 
operators on H, and L(H) c g(H), and an unsharp measurement is repre- 
sented by a POV-measure. 

Recently there has appeared a new mathematical model, difference 
posers (or D-posets, for short), introduced by K6pka and Chovanec (1994), 
which generalizes quantum logics and orthoalgebras as well as the set of 
effects, and which was inspired by an investigation of the possibility of 
introducing fuzzy set ideas to quantum structures models (K6pka, 1992). 
In this model, the difference operation is a primary notion from which we 
derive other, usual notions important for measurements. 

The aim of the present paper is the investigation of difference posets 
from the point of view of applications for quantum measurements. We 
study observables and states, and show their connection with POV-mea- 
sures in the set of effects. Conditions in order that observables have a 
Boolean range will be presented; this part generalizes results by Lahti and 
Maczyfiski (1992). Finally, we study Boolean powers of difference posets 
which can model a coupled system consisting of a microscopic unsharp 
quantum structure and a measuring apparatus. 

2. D I F F E R E N C E  P O S E T S  

A D-poset, or a difference poset, is a partially ordered set L with a 
partial ordering <, greatest element 1, and partial binary operation 
O: L x L ~ L, called a difference, such that, for a, b ~ L, b O a is defined 
if and only if a < b; the following axioms hold for a, b, c ~ L: 

(DPi) 
(DPii) 

(DPiii) 

b O a < b .  
b O(b Oa) = a. 
a < b < c  ~ c O b < c O a a n d ( c O a )  O ( c O b ) = b O a .  
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The following s ta tements  have been provided in K r p k a  and Chovanec  
(1994): 

Proposition 2.1. Let a, b, c, d be elements of  a D-pose t  L. Then: 

(i) 
(ii) 

(iii) 
(iv) 
(v) 

(vi) 
(vii) 

(viii) 

1 O 1 is the least element of  L ;  denote  it by 0. 
a O O = a .  

a O a  = 0 .  
a < b  =~ b G a = O  r b = a .  

a <-b =*, b O a = b  .**, a = 0 .  
a < b < c =~ b @ a  < c O a  and ( c G a )  O ( b O a ) = c ( ~ b .  

b < c, a < c G b  =~ b < c O a  and ( c O b )  O a = ( c O a ) O b .  

a < b < - c  =~ a < c ( ~ ( b G a )  a n d ( c e ( b O a ) ) ( ~ a = c O b .  

Remark  2.2 ( N a v a r a  and Pt~tk, n.d.). A poset  L with least and greatest  
elements 0 and 1, respectively, and with a part ial  b inary  opera t ion  
O:  L x L ~ L ,  where b O a  is defined i f f a  < b, such tha t  for  a, b, c ~ L we 
have 

(i) 
(ii) 

D-poset .  

a ( ~ O = a  

i f a < b < c ,  t h e n c ~ b < c O a a n d ( c O a )  O ( c O b ) = b G a i s a  

Fo r  any element a ~ L we put  

a• 1 G a  

Then  (i) a •177 = a; (ii) a -< b implies b • < a • Two  elements a and  b o f  L 
are orthogonal, and we write a _1_ b, iff a -< b • (iff b < a•  

N o w  we int roduce a binary opera t ion  ~ :  L x L ~ L  such that  an 
element c = a ~ b in L is defined iff a _1_ b, and for  c we have b < c and 
a = c G b. The  part ial  opera t ion  ~ is defined correct ly because if there 
exists c~ e L with b -< cl and a = c~ G b ,  then, by (viii) o f  Proposi t ion  2.1 
and (DPii) ,  we have 

(1 e ( c  G b ) )  (~b  = 1 e c  = (1 (~(cl G b ) )  G b  = 1 G c l  

which implies c = c~. Moreover ,  

a (~b  = (a • (-3b) • = (b -L G a )  • (2.1) 

Indeed,  denote  by x = (a • G b )  • F r o m  (vii) o f  Propos i t ion  2.1, we con- 
clude that  x = (b • (-Da) • Therefore ,  x •  a • G b, which means  a < x, 
analogously ,  b < x. Calculate  x G a = ( t  (~ (b i O a)) (~ a = 1 ~ b • = b 
when we have used (viii) o f  Propos i t ion  2.1. 
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The operation �9 is commutative (this is evident) and associative: 
suppose that y = a E)b and z = (a @b) @c exist in L. By (DPiii) we have 

( z O a )  G ( z  G y )  = y  O a  

(z ~ a )  O c  = b 

z G a = b O e E L  

z =a ~(b  Oc) EL 

Very important examples of difference posets are orthomodular posets 
( = q u a n t u m  logics), orthoalgebras, and sets of  effects. 

3. O R T I I O M O D U L A R  P O S E T S  

An orthomodular poset (OMP) is a partially ordered set L with an 
ordering -<, the minimal and maximal elements 0 and l, respectively, and 
an orthocomplementation A_: L ~ L such that 

(OMi) a l •  
(OMii) a v a  •  for a n y a E L .  

(OMiii) I f a - < b ,  t h e n b  •  • 
(OMiv) I f a < b  • (and we w r i t e a •  
(OMv) If a < b, then b = a v (a v b• • (orthomodular  law). 

If in an orthomodular poset L the join of any sequence (any system) 
of mutually orthogonal elements exists, we say that L is a a-orthomodular 
poset (a complete orthomodular poset). An orthomodular lattice is an 
orthomodular poset L such that, for any a, b ~ L, a v b exists in L (using 
the de Morgan laws, a A b exists in L, too). A distributive orthomodular 
lattice is called a Boolean algebra. We recall that an orthomodular lattice L 
is a Boolean algebra iff for any pair a, b E L there are three mutually 
orthogonal elements a~, bl, c E L such that a = al v c, b = b I v c. For  
more details concerning orthomodular posets and lattices see, e.g., Kalm- 
bach (1983) and Ptfik and Pulmannovfi (1991). 

One of  the most important cases of  orthomodular lattices is the system 
of  all closed subspaces, L(H), of  a real or complex Hilbert space H, with 
an inner product (., .). Here the partial ordering -< is induced by the 
natural set-theoretic inclusion, and M •  for any 
y E M}. Then L(H) is a complete orthomodular lattice, which is not a 
Boolean algebra, if dim H # 1. This structure plays a crucial role in 
axiomatic foundations of  quantum mechanics. 

If  for two elements a, b of  an OMP L, with a < b, we define by (OMv) 

b E )a := (a  v b• • 

then L with -<, l, and G is a difference poser. 
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4. O R T H O A L G E B R A S  

An orthoalgebra is a set L with two particular elements 0, 1, and with 
a partial binary operation G:  L x L ~ L such that for all a, b, c E L we 
have: 

(OAi) I f a  G b  ~ L, then b O a  e L and a @b = b G a  (commutativ-  
ity). 

(OAii) I f  b ( g c ~ L  and a @ ( b ( g c )  e L ,  then a O b e L  and 
(a G b) (9 c ~ L, and a �9 (b @ c) = (a �9 b) ~ c (associativity). 

(OAiii) for any a e L  there is a unique b ~ L  such that a ~ b  is 
defined, and a @ b = 1 (orthocomplementation).  

(OAiv) I f  a G a is defined, then a = 0 (consistency). 

I f  the assumptions of  (ii) are satisfied, we write a ~ b  @ c for the 
element (a @ b) @ c = a ~ (b @ c) in L. 

Let a and b be two elements of  an orthoalgebra L. We say that (i) a 
is orthogonal to b and write a • b iff a ~ b  is defined in L; (ii) a is less or 
equal b and write a < b iff there exists an element c ~ L such that a • c and 
a ~ c  = b (in this case we also write b -> a); (iii) b is the orthocomplement 
of  a iff b is a (unique) element of  L such that b Z a and a (9 b = 1, and it 
is written as a • 

I f  a -< b, for the element c in (ii) with a ' ~ c  = b we write c = b @a, 
and c is called the difference of a in b. It  is evident that 

b @ a  = ( a @ b •  • (4.1) 

In Foulis et al. (1992) there are proofs of  the following statements: 

Proposition 4.1. Let a, b, and c be elements of  an orthoalgebra L. 
Then: 

(i) a •  ,~  b •  
(ii) a • a =~ a = 0 .  

(iii) a •  ,~  a = 0 .  
(iv) a •177 = a .  
(v) 1 •  and 0 •  1. 

(vi) a i b  =~ a • (a @ b) • a (9 (a (g b) • 1 7 7  
(vii) a •  ,~  a - < b  • 

(viii) a < b  =, b = a @ ( a @ b •  • 
(ix) a ~ b = a ~ c  ~ b = c .  
(x) a ~ b < a ~ c  ~ b < c .  

(xi) 0 < a < l ,  a n d <  is a partial ordering on L. 
(xii) a < b  =~ b •  • 

(xiii) a ^ a ' = 0 ,  a v a  1 = 1 .  
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(xiv) 
(xv) 

(xvi) 
(xvii) 

(xviii) 
(xix) 

a l b ,  a v b e L  ~ a ~ b = a v b .  
a J- = 1 Oa.  

a <-b r b = a ~ ( b @ a ) .  
a = a O 0 .  
a < b  <c  ~ ( c G b ) @ ( b - ~ a ) = c G a .  
a < b < c ,~  ( c O a )  G ( c G b )  = b G a .  

We see that if L is an orthomodular poset and a @ b = a v b whenever 
a _L b in L, then L with 0, 1, @ is an orthoalgebra. The converse statement 
does not hold, in general, as it follows from the example of R. Wright 
(Foulis et al., 1992): 

Example 4.2. Let L = {0, 1, a, b, c, e,f ,  a • b • c • d • e •  • with 
a ~ b = d O e = c  • b ~ c = e ~ f = a  • c @ d = f ~ a = e  • c O e = d  • 
a G c  = b  • e @ a  = f •  is an orthoalgebra that is not an orthomodular 
poset. 

We recall that an orthoalgebra L is an OMP iff a _L b implies 
a v b e L .  

It is evident that any orthoalgebra L is a D-poset when a difference e 
is defined by (4.1). Indeed, (DPi) and (DPii) are trivially satisfied, and 
(DPiii) follows from (xix) of  Proposition 4.1. 

By Navara and Pt~ik (n.d.), we conclude that a D-poset L with 0, l, 
and G,  defined by (2.1), is an orthoalgebra if and only if a < 1 O a  implies 
a = 0. Therefore, it is not hard to give many examples of D-posets which 
are not orthoalgebras; such ones are sets of  effects. 

5. SETS OF EFFECTS 

The general line of this section is that the description of a physical 
system is based on a probabilistic duality of states and effects (Ludwig, 
1983). It means the approach where the set of  states of a physical system 
is represented as the base K of a base-norm Banach space (E, K). 

We recall that E is supposed to be a real linear space and K is base, i.e., 
a convex subset of  E such that x, y e K, s, t -> 0 with sx = ty imply s = t, 
and lin(K) = E, where lin means the linear span over given set. Then there 
is a unique linear functional e: E ~ R such that e(x) = 1 for any x ~ K. For  
this Minkowski functional e we have, for any x e E, e(x) = inf{t 2 0: x e  
t c o n ( K u - K ) } ,  where con means the convex hull. Putting Ilxll = 
Ilxll,,'=e(x), I1" II is a semi norm on E which is additive on K. Supposing 
that I1"11 is a norm on E, we call (E, K) a base-norm space. Providing E is 
a complete normed space with respect to I1" II, (g, K) is called a base-norm 
Banach space [for more details, see, e.g., Alfsen (1972)]. 
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Let E* denote the Banach dual space corresponding to the base-norm 
Banach space (E, K). We write, for two linear functionals f ,  g e E*, f < g 
i f f f (x)  < g(x), x ~ E. Since K is generating for E, we conclude that f < g iff 
f ( x )  < g(x), x E K. The Minkowski functional e belongs to E*, and e is an 
order-unit for E*, i.e., for any f E E*, there is an integer n such that 
- n e  < f < n e ,  and (E*, -<, e) is called an order-unit space with the sup- 
norm []/[[ = supllxll <j [f(x)[ = supx~/~ ] f (x ) [ , f  ~ E*. 

An effect is an element of the order-unit interval g = g(E). '= 
{ f e E * :  o -<f -<  e}, where o is the zero functional. The set of  all effects 
S(E) is a poset with the minimal and maximal elements o and e, respec- 
tively, and weak *-compact. The set of all its extreme points, Ext(g), has 
the following properties: if f ~  Ext(g), then e - f ~  Ext(g), the following 
join and meet exist in Ext(g), and f v ( e - f )  = e, f ^  ( e - f )  = o, and, 
according to the Kre in-Milman theorem, any element of  g can  be weak 
*-approximated by finite convex combinations of elements of  Ext(g). 

An a-observable is a mapping A : ~ ( R ) - ~ g ( E )  such that A ( ~ ) = o ,  
A(~) = e, and A ( U ~ I  Xi) = ~ f = l  A(Xi) for any sequence of  mutually 
disjoint sets Xg ~ ~ ( ~ )  (with the sum converging in the weak *-topology of 
E*). 

A mapping # from the set g(E)  into the real interval [0, 1] such that 
(i) /~(e)= 1 and (ii) if ~ g ~ f . - <  e (in the weak *-topology of  E*), then 
/2(2ielf/) :~"Ael/~(fi) is said to be a finitely additive, a-additive, or 
completely additive state, respectively, whenever the index set I in (ii) is 
always finite, countable, or arbitrary. 

Remark 5.1. It is easy to see that if for two effects f ,  g s g(E)  with 
f <  g, we define g Of. .=g - f ,  then g(E)  with <,  e, and O is a difference 
poser. 

Remark 5.2. The Hilbert space quantum mechanics is an important 
example of  the above general framework of  base-norm Banach spaces. 
Here we put E = Tr(H),  the set of  all Hermitian trace class operators on H, 
and K is the set of  all von Neumann operators on H. Then the dual E* can 
be identified with the set of all Hermitian operators on H, and e corre- 
sponds now to the identical operator I on H. The set of all effects, g(H),  
is thus the set of  all Hermitian operators between O a n d / ,  and the set of  
all extreme effects corresponds to the set of all orthogonal projection 
operators on H. In addition, any a-observable on g (H)  corresponds to a 
so-called POV-measure (Busch et al., 1991), and if dim H # 2, any com- 
pletely additive state # on g (H)  is in a one-to-one correspondence with a 
von Neumann operator T on H (Busch et al., 1991; Dvure6enskij, 1993) via 

#(P) = tr(TP), P E g(H) (5.1) 
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It is worth noting that if P, Q are two orthogonal projectors on H, 
then P ^ Q and P v Q exist in L(H) as well as in g(H) ,  2 and both meets 
and joins are identical. Indeed, let B be a positive Hermitian operator  on 
H such that B -< P, Q. Let M and N be ranges of  P and Q, respectively, 
and let C = B 1/2. Since Ilcxll 2 _< Ilexll 2, c and hence B vanish on M • 
Similarly B vanishes on N • and therefore B = 0 on (M c~ N)•  which means 
that B is invariant on Mc~N, and for x E Mc~N, (Bx, x) < Ilxll =, so that 
B < R ..= P ^ Q, where R is the orthogonal projector onto M c~ N. 

The assertion for join follows from the de Morgan law. Moreover, 
r  is not a lattice if dim H > 1 (Cattaneo and Nistic6, 1989). 

In Sections 6 and 7, we show that notions of  a-observables and states 
coincide with those for general difference posets. 

6. MEASURES ON DIFFERENCE POSETS 

The general notions of  group-valued measures on D-posets have been 
introduced in Dvure~enskij and Rie~an (1994). For  our aims we introduce 
the following notions. 

Let F = {al . . . . .  an } be a finite sequence in L. Recursively we define 
for n > 3  

al ~ ' "  �9 ~ an .'= (al ~ ' "  ' ~ a n -  1) ~ a n  (6.1) 

supposing that al ~ '  �9 �9 E) an _ 1 and (al @" �9 �9 ~ an _ 1) @ an exist in L. From 
the associativity of  @ in D-posets we conclude that (6.1) is correct- 
ly defined. Definitorically we put a l ~ . . ' ~ a  n =a  I if n = 1, and 
a l @ ' " @ a ~  = 0  if n = 0 .  Then for any permutation ( i~ , . . . , i n )  of 
(1 . . . .  ,n) and any k with l < k < n w e h a v e  

al ~ "  " ~ a ~ = a i t  O" " "~ain (6.2) 

a l ~ ' " O a ~ = ( a l ~ ' "  " ~ a k ) t ~ ( a k + l ~ ' "  "@an) (6.3) 

We say that a finite sequence F = {a I . . . . .  a n } of  L is E)  -orthogonal 
if a ~ @ ' - . @ a n  exists in L. In this case we say that F has a ~ ) - sum,  

7= 1 at, defined via 

~ )  ai = a l ~ "  " '~a~  (6.4) 
i = 1  

It is clear that two elements a and b of  L are orthogonal, i.e., a _1_ b, 
iff {a, b} is ~ )  -orthogonal. 

An arbitrary system G = {ai },-~ ~ of not necessarily different elements 
of  L is 1~-orthogonal  iff, for every finite subset F o f / ,  the system {a~ }~ F 

2L(H) can be identified with the P(H) of all orthogonal projectors on H. 
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is (~-orthogonal .  If  G = {as}s~ is (~-orthogonal ,  so is any {as}~o, for 
any J ~_ L An ( ~  -orthogonal system G = {a; };el of L has a ~ -sum in L, 
written as (~);~ ~ a~, iff in L there exists the join 

as..=V ~ as (6.5) 
i ~ l  F i ~ F  

where F runs over all finite subsets in L In this case, we also write 
~ G ' . = ~ i ~ l a  i. 

It is evident that if G = { a ~ , . . . , a , }  is (~-orthogonal ,  then the 
(~-sums  defined by (6.4) and (6.5) coincide. 

We say that a D-poset L is a complete D-poset (a-D-poset) if, for any 
(~  -orthogonal system (any countable ~ -orthogonal sequence) G of L, 
there exists the ~ -sum in L. It is straightforward to verify that a D-poset 
L is a D-a-poset if, for any sequence {as) in L with a~ < a2 < " �9 ", the join 
V~= 1 ai exists in L. 

A mapping p: L ~ [ 0 ,  1] such that (i) #(1) = 1 and (ii) # ( ~ s ~ z a ; )  = 
E;~,#(as)  if {as}ie I is ~) -or thogonal  with the ( ~ - s u m  (~)i~, a~ in L, is 
said to be a finitely additive, a-additive, or completely additive state, 
respectively, whenever (ii) holds for any finite, countable, or arbitrary index 
set L 

It is evident that a mapping #: L---, [0, 1] is a finitely additive state on 
L iff (i) p ( 1 ) =  1, (ii) # ( b O a ) = # ( b ) - # ( a )  if a <-b, and if, in addition, 
(iii) a, 7 a (i.e., al-< a , - < . . . ,  V ,  a, = a), then # ( a , ) 7  #(a), then # is 
a-additive. 

We recall that it is not hard to verify that these notions of states 
coincide with the usual ones for OMPs, orthoalgebras, and effects. 

7. O B S E R V A B L E S  I N  D I F F E R E N C E  P O S E T S  

A mapping x: ~ (R)  into a D-poset L such that (i) x ( ~ ) =  1 and 
(ii) x(E) L x ( F )  whenever Ec~F=O, E , F ~ ( R ) ,  and x ( E w F ) =  
x(E) ~ x ( F ) ,  is said to be an observable. 3 It is easy to see that x(0) = 0, 
x(R\E)  = x(E) x, E ~ ~(~) ,  and x (U 7=1 El) = ~ 7=I x(Es) whenever 
Ei c~ Ej = O for 1 <- i < j < n. 

If  (ii) in the definition of observables is changed to the requirement 
(ii)* {x(Ei) }~= I is (~) -orthogonal whenever {E; } is a sequence of mutually 
disjoint subsets from ~(R),  and x ( U L I  Ei) = ~ P=, x(Ei), we say that x 
is a a-observable. It is straightforward to see that previous notions of 
a-observables for effects coincide with ours. Moreover, a map x: ~(R)  ~ L 

3More generally, (R, &(R)) can be changed to a measurable space (fL ~). and (fl, ~-) is said 
to be a value space of the observable x. 
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is a g-observable iff (i) x(•) = 1, (ii) if E ___ F, then x(E) < x(F) and 
x(V\E) = x(F) Ox(E), and (iii) if E, / E, then x(E,) / x(E) (K6pka and 
Chovanec, 1994). 

In addition, if # is a a-additive state on a D-a-poset L and x is a 
a-observable of L, then #x : E ~ p(x(E)), E e ~(R), is a usual probability 
measure on ~(R), and via p(x) = SR t dl~x(t) we can define a mean value of 
x in/~ supposing that the latter integral exists and is finite. 

To give some examples of observables, we present the following 
notation and propositions. 

Let, for any t e T, At = {a~ }i~ i t be a system of not necessarily different 
elements in L, such that I t n l s = 0  for t # s ,  t, seT". Then, for A =  
{a~ }ie,,.t~ T we shall write A :=~J t eTA  t. 

Proposition 7.1. IfA = {ai};~, and B = {bj}j~,, with l n J  = 0, are two 
systems of a D-poset L such that A �9 B is (~  -orthogonal and (~  A and 
@ B exist in L, then @ (A �9 B) exists in L, and 

@ ( A  + B ) =  @ A @  @ B  (7.1) 

Proof. First we show that @ A / @ B. Indeed, since for any n, m 
we have @ 7 = ~ a ~  @'f'=,bjeL, we have @7=la,<(@~=,bj)  • so 
that @ A <  (@j=~bj) • which gives @7'=lbj<-(@A) • so that 
@B• CA. 

It is clear that @ 7-1 a/@ @ f=l bi - @ A ~ @ B. Now let c be an 
arbitrary element of L such that @7__-~ a ~  @~=1 bj < e for any n, m. 

n ~ m m Then @ e = , a , - e O  @ j = , b y  and @ A  < c O  @j=,bj. Therefore, 
@ ~ ' = , b j < e O @ A ,  which gives @ A @ @ B < e ,  so that (7.1) 
holds. [] 

i Proposition 7.2. Let A = ~jt~ TAt, where At = {at};~z,, It c~I~ = 0 for 
t # s, t, s �9 T, to be an @ -orthogonal system of a D-poser L and let, for 
any teT, (~A,  exist in L, and @,~T( @A,)eL.  Then @ A  exists in L, 
and 

@ A =  @ ( @ A , )  (7.2) 
t e T  

Proof. Let {a , , . . . ,  a,} be a finite sequence from A, and a; e At, 
for any i = l , . . . , n .  Then @ 7 = , a ~ <  @ 7 = , ( @ A t ) ,  so that 
@7=,  a~ < @ t e r ( @ A t ) .  Suppose now that (~7=~ a~ < e  for all a~eA 
and any n. Then, for any At~ . . . . .  A,,., we have by Proposition 7.1, 

m _ " m @ k = ~ ( @ A t k ) - - @ ( ~ k = l A t k ) ,  SO that @ ~ ' = t ( @ A , k ) < c ,  which 
means (~)t~r(@At) < c, and consequently, (7.2) holds. [] 

Corollary 7.3. Let L be a D-a-poset and {a, },~=o be a @-orthogonal 
sequence of elements in L such that @,~= 0 a, = 1. Then the mapping x 
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defined via 

x(E) = (~  {al}i~E, E c ~ ( ~ )  (7.3) 

is a a-observable of L. 

Proof. It follows from Propositions 7.1. and 7.2. [] 

In particular, given an element a of a D-poset L, let ao = a -L, a~ = a. 
Then x~ defined by (7.3) is a so-called question observable (i.e., an analog 
of characteristic functions). 

Let A be a subset of D-poset L such that (i) l eA,  (ii) if acA,  then 
a• (iii) if a, boA, a _L b, then a G b c A ,  (iv) for any a, bcA, a vA boA 
[(iv*) for {ai}F= 1 from A, V~= ,A aicA], where the join VA is taken in A 
(not in L), and (v) A with respect to 0, 1 .1_, and vA is a Boolean (a-) 
algebra [for the definition of Boolean algebras, see, e.g., Sikorski (1964) is 
said to be a Boolean algebra (Boolean a-algebra) of L. 

If  A is a Boolean algebra of L, then a @ b = a VA b whenever a, b cA. 
We recall that there are examples of D-subposetr A of L (see below) such 
that a G b cA and a 'cA b 4= a @ b. 

Let x be an observable of L; then by a range of x we mean the set 
~ , = ~ ( x )  = {x(E): Ec~'(lt;~)}. If  L is an OMP or an orthoalgebra, the 
range ~(x) is always a Boolean algebra of L (Varadarajan, 1985; Pt~tk and 
Pulmannovfi, 1991; Pulmannovfi, 1993a). In difference posets this statement 
does not hold, in general. Indeed, let L = g(H),  and a = �89 Then a •  �89 

l and the range of the question observable x~ is {O, �89 I}, but �89 v~ 5I = 
1 1 �89 -r ~I �9 21 = L 
The Boolean character of the range of an observable is an important 

feature of observables, and in the frame of effects this problem has been 
solved in Lahti and Maczyfiski (1992). We now present a more general 
solution for difference posets. 

We say that an observable x of a D-poset L is regular if 
x(E) <- x (~ \E)  for some Ec~(g~) implies x(E) = O. 

Theorem 7.4. An observable (a-observable) x of a difference poset L is 
regular if and only if the range ~(x)  is a Boolean algebra (Boolean 
~r-algebra) of L. Then 

x(E) = ~/ ~x(E~), x(F) = f~ ~x(F~) (7.4) 
i=  l ~ i =  l 

whenever E = U~=l E;, F = n~= l F;, E;, F~ c~([]~). 

4A subset A of  a D-poset L is a D-subposet  if (i) l e A ;  (ii) if a, b ~ A ,  a <-b, then b ~ a e A .  
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Proof. Suppose that ~(x)  is a Boolean algebra of  L and let 
x(E) <- x(EC). Then 1 = x(•) = x(E u E ~) = x(E) vs  x(E ~) = x(E~), thus 
x(E) = O. 

Conversely, let x be a regular observable. It is easy to see that 
0, 1 ~ ( x )  and if x(E)6~(x), then x(E) -L e~l(x). Now we proceed by steps. 

(i) Let x(G) <- x(F), x(F~). Then x(F), x(F ~) <- x(GC), so that x(G) <-<- 
x(F) <-x(GC), which yields x(G) = O. 

(ii) Let x(E), x(F) be orthogonal elements of ~(x). Then x(E n F )  -< 
x(E), x(E n F)  -< x(F~), x(F), which by (i) gives x(E n F) = 0. Therefore, 
x(E) = x(E\F), x(F) = x(F\E), and x(E) (~ x(F) = x(E\F u F\E) = 
x(E u F) ~ ( x ) .  

(iii) Let {x(E~) . . . .  ,x(E,)} be ~D-orthogonal. Then for F,.= 
E; \UJ  e; Ej, i = 1 , . . . ,  n, we have x(Ei) = x(Fi), and 

(iv) {x(E1) . . . .  , x(E,)} is @-or thogona l  iff x(Ei) _L x(Ej) for i r  
Indeed, this follows from the fact that for Fi from (iii) we have 
x(Ei ) = x(Fi), and 

X(~i I Ei)=x(~i I Fi) =~[~X(Fi)=~X(Ei)E~(X)i=I i = 1  

(v) If  { x ( E l ) , . . . ,  x(E,)} is (~-or thogonal ,  then 

Indeed, if E = UT= ~ Ei, then x(E) >- x(Ei), i = 1 . . . . .  n. Let x(G) 2 x(E~), 
i =  1 , . . . ,  n. Then {x(G~'), x(El ) , . . . ,  x(E,)} is, by (iv), ~)-or thogonal ,  
and therefore we have 

~t(x)~x(6") ~ ~ x(E~) = x(G ~) Ox(E) 
i = 1  

which means x(E) < x(G c) • x(G). 
(vi) Let E = iT=  ~ Ei; then 

x(E) = V ~ x(E~) 
i=l 

Indeed, every Ek is of  the form 

' f i  Ek--- U E~,, where E~ = E~ ', El = E~ 
j~ ...jn=o i= 1 
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Then by (v), 

where F~ is of the 
Jl . . . . .  in e{O, 1}. 

If x(G) >- x(Ei), 
x(G) >- x(E). 

x(E) = kv/~ x(Fs) 
s| 

form (']7=, E~ for some suitable numbers 

i = l  . . . . .  n, then x(G) >-x(Fs), and by (v) 

(vii) Let E = U 2 = , E  n and define G,, = U n = l  E i, F n = E i \ U T - l l E i  . 

Then E = UnOO=l Gn = U ~ = l  F,, G, = iT=,  Ft. Calculate 

x (E )=  ~ ) x ( F , ) =  ~/ + x(F,.)= V x(G,)=  V x ( 0  E;)  
n = l  n = l  i=1 n = l  n = l  i 1 

so that if x (G)> x(E,),  n > 1, then by (vi), x (G)> x(UT= l E,.), which 
yields x(G) > x(E). Thus we have proved the first part of (7.4). 

Dually we prove the second part of (7.4). This distributivity of ~R(x) 
follows from the following: let A,B, Ce~(R)  be given; then 
x(A) ^ (x(B) v x(C)) = x(A) ^ (x(B w C)) = x(A c~ (B u C)) = x(A c~ B) v 
x(Bc~C) = x ( A ) ^  x ( B ) v  x ( B ) ^  x(C), and this proves that ~(x) is a 
Boolean (a-) algebra of L. [] 

Remark 7.5. We recall that in any D-poset L there exist at least two 
regular observables, namely the question observables xl and Xo correspond- 
ing to 1 and 0. On the other hand, there are D-posets which possess no 
regular observables with the exception of Xo and x~. Such a one is, e.g., 
L = [0, 1] with the natural ordering of real numbers, and • is the usual 
difference of real numbers in the interval [0, 1]. 

In g(H) there are plenty of regular observables, for example, those 
having range in L(H). We note that an observable x is regular iff A eN(x), 
A :A O, implies A, I - A ~ �89 (equivalently, the spectrum of A and I - A is 
not contained in [0, 1/2]). 

8. O R T H O M O D U L A R I T Y  IN D I F F E R E N C E  P O S E T S  

In the present section, we derive necessary and sufficient conditions 
that a subset of a D-poser L satisfies orthomodularity, and the given results 
generalize those in Lahti and Maczyfiski (1992). 

A triplet of mutually orthogonal elements (not necessary different) 
al,a2, a3 of a D-poset L is said to be a triangle, and is denoted by 
A(ai, a2, a3)- A triangle A(al, a 2, a3) is said to be closed if ai (~azt~a3 is 
an element of L. This is equivalent to saying {a~, a2, a3} is @ -orthogonal. 

Let A be a subset of a D-poset L which contains at least one triangle. 
We say that A is triangle closed, or A-closed, for short, if (i) aZeA  
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whenever a ~A, and (ii) if al,  a2, a3 ~A, A(al ,  a2, a3), then al @ a2 ~ as ~A, 
a~@as~A for l < i < j < 3 .  

We recall that if A is A-closed, then 0 and 1 belong to A. Indeed, there 
exists a triangle A(a~,az, a3) in A. Then b =al~a2~A; consequently, 
b• Observing that {al,az, b •  is a triangle, we have 1 =  
a I~a2Gb• and 0 = I I ~ A .  

In a subset A of a D-poset L the orthomodularity hoids if for a < b, 
a, b~A, we have b = a vA (b ^A a• where the meet and join ^A,VA are 
taken in the set A. 

Theorem 8.1. A subset A of a D-poset  L is an or thomodular  poset 
with respect to 0, 1, < ,  2- if and only if A is A-closed. Moreover,  
al v �9 �9 �9 v a,  = al @" �9 �9 ~ a, for any set {al . . . .  , a,  } of  pairwise orthogo- 
nal elements of  L. 

Proof. The necessity is clear. For  the sufficiency we claim to show that 
a v b exists in A whenever a _1_ b, and a v b = a ~ b. 

Since aOb  >-a,b, we have to show that if a,b <c for some ceA, 
then a~b<_c. Since {a,b,c • is a triangle, a @ b ~ c •  hence 
a ~ b < l O c •  

Moreover,  by induction, we have a~ v �9 �9 �9 v a,  = al G" " " � 9  an, and by 
the de Morgan law, a ^ a-L = 0 for any a ~ A. 

Let now a < b ;  then a v b  •  •  • and b =  
a O ( b O a ) = a v ( a v b •  • By the de Morgan law in A, we have 
( a v b •  • 1 7 7  �9 

Corollary 8.2. Let A~ and A2 be two A-closed subsets of  L. Then for 
any a,b~A~c~A2, i f a  _l_b, then a Vl b = a @ b = a  v2b. 

Proof. It  follows easily from Theorem 8.1. �9 

We say that a D-subposet A of a D-poset L is an orthomodular poset 
of L if (i) a, b ~A, a 2- b, then a v A b ~A, and (ii) orthomodulari ty holds in 
A. 

A subset A of L is said to be a suborthoalgebra of  L if (i) 1 ~A, (ii) 
a~A implies a• (iii) a, b~A, a 2.b, then a ~ b ~ A ,  and (iv) a ~ a  for 
a eA entails a = 0. It  is easy to see, owing to the end of Section 4, that a 
D-subposet A of L is a suborthoalgebra of  L iff a < a • aeA, implies 
a = 0 .  

Theorem 8.3. Let x be an (a-) observable of  a difference poset L. The 
following assertions are equivalent: 

(i) x is regular. 
(ii) ~ (x)  is a Boolean (a-) algebra of  L. 
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(iii) ~t(x) is A-closed. 
(iv) ~(x)  is an orthomodular poset of L. 
(v) ~(x)  is a suborthoalgebra of L. 

Proof. The equivalence (i) ~ (ii) has been proved in Theorem 7.4. 
(ii) =~ (iii). {x(O),x(O),x(E)} is a triangle in ~t(x). Let now 

A(x(E), x(F), x(G)) be given. As in the proof of Theorem 7.4, we can 
choose mutually disjoint Borel subsets E1,F~,G l so that x ( E ) =  
x(E1), x(F) = x(F1), x(G) = x(Gl). Then x(E, u F1) = x(E) ~ x(F), 
x(g 1 t,.3 GI) = x(E) @ x(G), x(F 1 uG1) = x(F) @ x(G), x(E 1LIF 1L,I G1) = 
x(E) @ x(F) @ x(G) E~(x), so that ~t(x) is A-closed. 

(iii) =~ (iv). It follows from Theorem 8.1. 
(iv) =~ (i). Let x(E) <- x(EC); then for the triangle 

A(x(E), x(EC), x(0)) we have 1 = x(R) = x(E) @ x(EO @ x(0) = x(EO, 
hence x(E) = 0, which proves the regularity of x. 

(v) ,*~ (i). It now is evident. [] 

9. B O O L E A N  P O W E R S  OF D I F F E R E N C E  P O S E T S  

Let L be a nonempty set and B a complete Boolean algebra with 0s 
and 1B as minimal and maximal elements of B. Motivated by Gr/itzer 
(1968) and Drossos and Markakis (1994), we say that the structure L[B] 
defined via 

L[B]=~fEBL:a~b  ~ f ( a ) ^ f ( b ) = O s a n d  V f ( a ) = l s  (9.1) 
l aEL ) 

is a Boolean power of L (or a Boolean extension). 
Boolean powers for OMPs and orthoalgebras have been studied in 

Pulmannov~i (1993a,b) and in a modified form in Ptfik (1986). In the 
present section we give a Boolean power of a difference poset showing that 
it is always a D-poset. 

Define, for any aeL, a mapping ~: L ~ B  via 

Is if x = a, 
x EL (9.2) 

a ( x ) =  0s if x # a ,  

Then ~ EL[B]. 

Theorem 9.1. Let L be a difference poset with <,  0, 1, and O ,  and B 
be a Boolean complete algebra. For f ,  geL[B] we define a partial binary 
relation < via 

f <  g iff V f(x) ^ g(y) = 1 s (9.3) 
x ,y~L 
x < y  
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and for f, g eL[B] with f <  g we put f o g :  L ~ B  via 

(f(~g)(x) = V f(b) A g(a), xEL  (9.4) 
a,b e L 

x = b e a  

The Boolean power L[B] with <, O defined via (9.1), (9.3), and (9.4) is a 
difference poset with the minimal and maximal elements 8 and T, respectively. 

Proof. First of all we show that < defined by (9.3) is a partial 
ordering on L[B]. 

Reflexivity. Since f(x) <-f(x) for any xeL ,  we have 

V f(x) A f (y )  = V f(x) = 1 s 
x , y e L  x ~ L  
x ~ y  

Antisymmetry. Let now f <  g, g <f ;  then 

le ]x.y~/. If(x) A g(Y)l A [g(u) Af(v)] 
k x ~ y  L 

= V V [f(x) Ag(y) Ag(u) Af(vll 
x , y e Z  u , v e Z  
x ~ y  u<-v 

= V [f(x) Ag(y) Af(v)] = V [f(x) Ag(x)] 
x,y,  v e L  x ~ L  

x ~ y ~ v  

so that, for any y e L ,  

Hence f (y )  < g(y). By symmetry, g(y) < f (y) ;  hence f (y )  = g(y), y e L, 
and f = g. 

Transitivity. Let f ,  g, h eL[B] with f < g and g < h be given. Calculate 

= V V [f(x) A g(y) A g(u) A h(v)] 
x , y e L  u , v e L  
x ~ y  u ~ v  

= V [f(x) Ag(y)  Ah(v)] 
x,y,v ~ L 

x < y ~ v  

x , y e  L 
X ~ V  

= V [ f (x )A h(v)] 
x,  v e L  
x ~ t )  

i . e . , f -  < h. 
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From the above we conclude that f = g iff Vx~L f(x) A g(x) = lB. 
Let now f~L[B] and 0, 1 eL be maximal and minimal elements of L. 

Then 

V [0(x) Af(y)] = V f(Y) = la 
x,yEL yEL 
x ~ y  

Hence 8 < f. Similarly 

V [f(x) A i(y)] = V f(x) = 1B 
x , y e L  xEL  
x ~ y  

so that f < 1. 
In other words, L[B] with <- defined by (9.3) is a poset with the least 

and greatest dements 8 and 5, respectively. 
Now we claim to show that L[B] is a D-poser with O defined by 

(9.4), Indeed, for that it is necessary to show t h a t f O  0 = f f o r  anyfeL[B], 
and if f<-g<h, then h G g < h O f  and ( h O f ) O ( h e g ) = g O f  
Calculate 

v v 
x ~ L  U, vEL 

u e v ~ x  

=xYL [f(X) A uyLf(u)I = V f(x) = 

so that f O  0 = f  
We claim to show that i f f  -< g, then (9.4) defines an element of L[B]. 

Let a ~ b. Then 

(g Gf)(a) A (g Of)(b) 

In addition, 

= V V [f(x) A g(y) Af(u) Ag(v)] 
x , y e L  u,vEL 

y O x = a v e u = b  

= V V f(x) Ag(y) =OB 
x ,y~L u,v~L 

y e x = a v ~ u = b  

V (gGf)(x)= V V g(v) A f ( u ) =  V g(v) A f ( u ) = I  B 
x ~ L  xEL  u,v~L u,v~L 

V e U ~ X  U~V 

which says that g O f  eL[B]. 
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Let f < g < h; then 

V (h O f ) ( y )  ^ (h Og)(x)  
x,y ~ L 
x ~ y  

= V V V [h(v) ̂ f (u)  ^ h(t) ^ g(s)] 
x ,y~L U,v~L s,t~L 
x ~ y  v ~ u = y t e s ~ x  

= V V [h(v) ^ g(s) ^f(u)] 
x ,y~L u,&v~L 
x ~ y  v e u ~ y  

v e ~ x  

= V [h(v)/xg(s) ^f(u)]  
u,s,vffL 

t t ~ S < V  

Hence h O g < h O f  and 
U U < ~ t  

V [(h @f) O(h Og)(z) ^ (g Of)(z)] 
z~L  

= V V V [(h e f ) ( y )  ^ (h Og)(x)  ^ g(q) ^f(p)]  
z e L  x ,yEL p,qEL 

y e x = z q e p = z  

= V V V V V [h(v) ̂ f (u)  ^ h(t) ^ g(s) ^ g(q) ^f(p)]  
z~L  x , y e L  u,v~L &tEL p,q~L 

y O x = z  v ~ u = y  t ~ s  = x  q e P  = z  

--V V V [h(v)^f(u)^g(s)] 
z~L x,yEL u , s , ~ L  

y ~ x ~ z . u ~ a < v  
v e u = y  
V ~ S = X  
S @ ~ = Z  

= V V (hOf)(y) ^ (hOg)(x) 
zEL x ,y~L 

y e x = z  

= V (h O f ) ( y )  ^ (h Og)(x)  = ls  
x,ya L 
x ~ y  

which proves (h O f )  O(h Og) = g  Of- �9 

Let now B be a Boolean algebra and L a D-poset. The set 

L[B]* = {feBL: a # b  =~ f(a)  ^ f (b)  = O s , f ( L )  is finite, a~LV f ( a ) =  Is}  

is said to be a bounded Boolean power of L. Using the same methods as in 
the proof of Theorem 9.1, we may prove that LIB]* with I~, 7, _<, O 
defined by (9.2)-(9.4) is a difference poset, too. For L a logic or an 
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orthoalgebra, bounded Boolean powers (in an equivalent modified form) 
are studied in Pt~tk (1986) and Foulis and Pt/tk (1993). We recall that the 
properties discussed in the following section also hold for bounded Boolean 
powers. 

10. P R O P E R T I E S  OF B O O L E A N  P O W E R S  

Let B be a complete Boolean algebra and L a difference poset. Let 
T = {t,: i~I}  be a resolution of 1B, i.e. ti ^ t /=  0B if iv~j  and V i ~ l  t~ = In. 
If { f :  i~I} ~_ L[B], then 

f (x )  = V (f . (x)  ^ t,), x ~L (10.1) 
iEI 

is an element of L[B]. For (10.1) we can use f =  k / ~ s f  ^ t~ or the "sum" 
notation 

f = Z f "ti (10.2) 
i~I 

In particular, if {ai: i e I }  ~ L and {t~: i~I}  is a resolution of  In, then 

Y'. ai " ti (10.3) 
i~l  

belongs to L[B]. Conversely, any elementf~L[B] can be written in the form 
(10.3) for appropriate pairwise different a; in L and a resolution 
T = {ti" i~I}.  Indeed, given feL[B],  we put I = L and T = {f(a): a~L}.  
Then 

f =  Y',gt ' ta 
a~L 

where t, = f (a ) ,  a~L. 
In addition, we may assume that the resolution of  la is strictly positive 

(i.e., ti 4 0B for each i). This form is called the reduced representation o f f  
by its values, supposing that the ai are pairwise different. We recall that 
in this c a s e f h a s  a unique reduced representation. Indeed, if f =  ~ i  4;- ti = 
~ / 4 "  sj, t~, s / >  0B, and {a; } and {b/} consist of pairwise different elements, 
thenf(x)  = 0B i f fx  # a; for any i, andf (x )  = ti i f fx  = a~, so that a; = bj and 
t~ = 6  for some i and j. 

Let L~ and L2 be two difference posets. The mapping h: L~ ~ L 2  is 
called a monomorphism if (i) h( l l )  = 12, and (ii) a _1_ b iff h(a) _1_ h(b), and 
h( a ~ b ) = h( a) ~ h( b ). Then h( a • = h( a) • a e L, and h is injective. If  h is 
surjective, we say that L~ is isomorphic with L2 (or, without misunderstand- 
ing, that L~ and L2 are isomorphic). 

Theorem 10.I. Let L be a difference poset and let B be a complete 
Boolean algebra. Then the mappings 2: L--*L[B], defined via 2 ( a ) =  ~, 
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where t~ is defined via (9.2), and fl: B--,L[B] defined for b e B  via 

t b if x = l  L 
fl(b)(x) b c if x =OL, x e L  (10.4) 

{On otherwise 

are monomorphisms preserving all existing suprema (infima) in L and L[B], 
respectively. In particular 

whenever t~ia~ exists in L. 

Proof. We recall that the partial binary operation ~ on L[B] can be 
defined either via (2.1) or, equivalently, via 

( f (~g)(x)  = V f(u)  ^ g(v), x e L  
u,v~L 

u ( ~ v = x  

and f •  = f ( x l ) ,  x eL. 
Since 2(a)-< 2(b) iff a-< b, we conclude that if a = V i a / ,  then 

2(a) > 2(ai) for any i. If for geL[B] we have g > 2(a~) for any i, we have 

1B= V g(Y) ^ai(x)= V g(Y) 
x ,y~L  y e L  
x < y  y > a  i 

which gives 

1~= V g(Y)= V g(Y) ̂ gt(x) 
y ~ L  x ,y~L  
y ~ a  x < y  

so that 2(a) < g. 
For fl we conclude as follows. We have f l ( b ) ( x ) = ( l ( x ) ^  b ) v  

(0(x) ^ b c) or /~(b) = i .  b + 0 .  b c. I-Ience /~(1)(x) = T(x) and fl(bC)(x) = 
([(x) ^ b c) v (O(x) ^ b) = fl(b)(x• since l(x • = 0(x) and 0(x l )  = l(x). 
Let feL[B].  Then 

( b ^ f ( y )  if x = l L  
fl(b)(x) ^ f ( y )  = ~b C ̂ f ( y )  if x = 0L 

~0B if x~a lL ,  x~a0L 

and therefore 

x,y~ L \ y s L  / 
x < y  

which entails that fl(b) N f i r  and only if b <f (1) .  For b~, bEeB this gives 
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that fl(b~) < fl(b2) if and only if bl < b2. Now assume that b = V;  br Let f 
be any upper bound of fl(bi) for any i. From bi < f (1 )  for any i we get 
V~b~<f(1), hence ~ (b )<f .  That is, ~(b)= Vifl(b~). This proves that 
~: B-~ L[B] is a complete embedding. I 

Theorem 10.2. Let # be a finitely additive state on L and t/ a 
completely additive state on B. Then there is a unique finitely additive 
state, # | t/, on L[B] such that 

(# | q ) ( f )  = ~ #(ai)rl(ti) (10.5) 
i 

whenever f is in the reduced representation form f =  ~ i  ~; �9 t;. 

Proof. Since the reduced representation form of f is unique, the 
right-hand side of (10.5) is defined correctly, and 0 < (# |  < 1 for 
any feL[B].  Due to i = ] .  1B, we conclude that (# | r/)(T) = 1. In addi- 
tion, if f has any (no reduced representation f = ~ j  4 "  sj, then, for any i we 
have On # f ( a ~ ) =  t~ = Vj/b.(ai) ^s j ,  which gives that, for any i, there is j 
such that t; =s j  and therefore (# |  ~jp(bj)~l(sj), too. 

Suppose t h a t f  L g, f ,  geL[B]; then we can assume t h a t f a n d  g are of 
the form f = ~ a ; . w ~  and g=~iO~.w~ ,  where ui • and hence 
f ~ g  = ~ i  (ui | vi) ^ �9 wi, and 

(# | rl)(f �9 g) = ~ #(ui ~ v~ )q(w~) 
i 

+ 
i i 

= ( # |  + ( # |  [] 

The state # | t / f rom Theorem 10.3 is said to be a product state of # 
and t/ on L[B]. 

I f f  = ~ ~ . t~, g = ~ j  4 " s] are reduced representations, then f -< g iff 
a~ <-- bj whenever t~ ^ sj # 0B. Consequently, fl(b) ^fex i s t s  for any b eB and 
feL[B],  and is equal to 

fl(b) A f = ~ ai " ti ^ b + ~) . t i A b c 
i 

Moreover, fl(b) ^ ( f  ~ g )  = ~(b) ^ f O ~(v) ^ g. 
For a state m on L[B] (L[B]*) define the mapping m~(b) via 

m,(b)(f) =m(fl(b) ^ f ) ,  feL[B] ( feL[B]*) 

11. E X A M P L E S  O F  B O O L E A N  P O W E R S  

In the present section, we give three special cases of Boolean powers 
when (i) B is an atomic complete Boolean algebra, (ii) L is the set of all 
effects of a v o n  Neumann algebra, and (iii) B is a set of skew operators. 
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We recall that a Boolean algebra B is atomic if, for any aeB, there is 
an atom b of  B such that b < a. Denote by Bo the set of  all atoms in B. 
Then Bo is the resolution of  lB. 

Let, for any ieI, Li with -< i, li, O~ be a D-poset. Then L,=I-L~xL ~ 
is a D-poset, called a product D-poset of {Le: ieI}, when <, l, and O 
are defined on L as follows: {at}-<- {b;} iff a~ <~b~, i d ,  1={1~}, 
{b,.} @{a,.} = {b, O,a,}. 

Motivated by Gr~itzer (1968), we can prove the following statement: 

Theorem 11.1. Let B be an atomic, complete Boolean algebra and L a 
D-poset. Let Ls = I-Ib~so Lb, where Lb = L for every b~B o. Then Ls is 
isomorphic with L[B]. 

Proof For { a  b } ~La we define an element of L[B] via EbEB ~ fb " b. It 
is not hard to show that the mapping h:Ls~L[B]  such that 
{ab } ~ ~b~so fib " b is a monomorphism from Ls into L[B]. 

On the other hand, let feL[B] and let it have the reduced representa- 
Then, for any x~L,  we have tion f = ~ i  ai" ti- 

f(x) = V fi (x) ^ ti 
i 

= V V ^ t, ^ b 
i b e B o  

= V V fi(x) A t iAbA V 
b E B o i b e B  o 

b <  t i 

= V V f i  ( X )  A t i A b 
b ~ B  i 

b <  t i 

V fi(x) ^ t i A b  
i 

b . L  t i , 

If  we put a b = ai whenever b < t;, then f = ~.o~so ab " b, which proves 
that h is surjective. �9 

Corollary 11.2. Let # be a a-additive or completely additive state on a 
D-poset L and q a completely additive state on an atomic, complete 
Boolean algebra B. Then the product state/~ | q on L[B] is a-additive or 
completely additive, respectively. 

Proof. The assertion follows from Theorem 11.1 because then f =  
(~)if" iff f~ = ~b~so fg" b, f =  ~b~So ab" b, and a b = ~ i  ag. Owing to 
(10.5), we obtain the desired result. �9 

Suppose that ~r is a v o n  Neumann algebra of  operators acting on a 
complex Hilbert space H. Denote by 8(~r the set of  all Hermitian 
operators A on H from d such that 0 < A < I. Then 8(~r with the usual 
< and e (as a difference) is a D-poset [in fact, it is a D-subposet of  8(H)]. 
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If B is a complete Boolean subalgebra of the set P(H) of all orthogo- 
nal projections on H, then by Bade's theorem (Bade, 1955; Dunford and 
Schwartz, 1971, Section XVII.3), B is the projection lattice of the Abelian 
von Neumann algebra aft of operators acting on H generated by B, i.e., 

= P ( d )  = {p d: P *  = P, p2  = p } .  

Theorem 11.3. Let L=8(al j )  be the set of all effects of a yon 
Neumann algebra agl of operators acting on a complex Hilbert space H1 
and let B = P(ar be the projection lattice of an Abelian yon Neumann 
algebra d 2  of operators acting on a Hilbert space /-/2. Then L[B]* and 
L[B] are isomorphic with D-subposets Lo.'={~7=~ P,| Pied~(d~), 
{B;}7= 1 is a finite resolution from B of the identity 12} of 8(H~ |  and 
L, = { Z  i Pi | Bi: P, eo~(dl ), {Bi } is any resolution from B of 12} , respec- 
tively. 

Proof. (i) Let us consider the set Lo of all operators on Hi | of the 
form ~7= i Pi | B,., where ei ~ 8 ( d l )  and {Bi}7= l is a finite resolution of 
the identity /2. Then Lo is a D-subposet of 8 ( d ~ | 1 6 2 1 7 4  
Indeed, the minimal element of Lo is of the form O~ | B or P | 02, where 
O; is the zero operator on H i and P ~ 8 ( d l ) ,  BEP(ag2). We have to verify 
the condition of Remark 2.2. 

Let e = ~7= J Pi | B;; then 

P O 0 =  ~ PI|174 = ~ (Pi@Ol)| ~ ei| 
i : l  i = l  i = l  

We claim that for P, OeLo, P = Y.~'= ~ Pi| a = ~ j = l  Qj| we 
have P < Q  iff P ; < Q j  whenever B i C j # O  2 . Indeed, let P < Q ;  then 
0 < O OP = ~i,j(QjGPi) | Let 49eH1, 0 =/= ~eBiCjo. Then 

0 < ((Q eP)4) | ~) GO> = ((Q,o ePio)dp,  >t10 II 2 

which entails Pio < QJo" Conversely, if P~o < QJo whenever B~o Cjo r 02, then 
easily P < Q. 

In addition, if all P; are mutually different, then the representation of 
P in the form P=~'/=~Pi| (Bi#02) is unique. Indeed, assume 
P = ~=1 Pi | Bi = ~_.s%, QJ | Ci. We have proved that Pi = Qj whenever 
B~C s r 02. Suppose now that B~oCjo r 02 and choose O eCjo. Then, for any 
~b ell1, 

Pi~ | Bi~ q~ | lP = Pc) | lP = ( ~i= , Pi | Bi ) dp | ~p 

= ( i = ,  ~ O'|  49| =Q'o |176174 
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which gives 

P,odp | B,o~ = Ojo~ | Csod/ = QJo~ | r 

and consequently Cso < Bio and by symmetry Bio < Cjo. 
Therefore, (ii) of Remark 2.2 easily holds. 
(ii) For  this we recall that the series ~ P ~ |  where {B~} is any 

resolution of 12, strongly converges, and it is an element of o~(~'1 | ~r 
Using similar arguments to those in the first part of  the present proof, we 
conclude that LI is a D-subposet of o~(d~ | d2 ) .  

The mapping h from L[B]* or L[B] into Lo or L~, respectively, defined 
via h ( ~  lfi~. Bi) = ~ P~ | Bi is the desired monomorphism. II 

Let now P be a skew operator on a complex Hilbert space H, i.e., P 
is a bounded linear operator on H with p2 = p. Denote by L ~ ( H )  the set 
of  all skew operators on H. For  two skew operators P and Q on H we 
write P < Q iff PQ = QP = P (which is equivalent to the requirement 
Me ~_MQ and N o ~ Ne, where Me = {Px: x ~ H }  ( = { x ~ H :  Px = x } )  and 
Ne = {x~H:  Px = 0}. 5 Then O < P ~ I for any P ~ L ~ ( H )  and for any P 
we define an orthocomplement P "  of P via P• = I - P, which entails that 
(Mushtari, 1989; Mushtari and Matvejchuk, 1985) Lse(H) with respect to 
<,  _L, O, and I is an OMP which, if dim H >- 3 (Mushtari, 1989), is not a 
lattice, and if dim H = ~ ,  then it is not a tr-OMP, respectively. We recall 
that P_I_Q iff P + Q < I  (equivalently, Q P = P Q = O ) ,  and then 
P v Q = P + Q and P ^ Q = P Q ,  and M e ^ o  = Mec~MQ when PQ = QP. 
Let B be a complete Boolean algebra of skew operators. Then by Bade's 
result (Dunford and Schwartz, 1971, pp. 2196-2199), B is the set of 
all skew operators of  the Abelian von Neumann algebra ~1 generated by 
B, and, in addition, there is a constant K >- 0 such that [IP II ~ g for any 
P~B.  

We denote by L~(~r the set of all skew operators on H from ~r The 
L, eg(~r is a sub-OMP of L~(H) .  6 

Theorem 11.4. Let L~(MI)  be the set of all skew operators of a v o n  
Neumann algebra zr 1 of  operators acting on a complex Hilbert space 
H~, and let B be a Boolean algebra of skew operators on a complex 
Hilbert space H2. Then L[B]* is isomorphic with the sub OMP  Lo = 
{En=l P ~ |  {B;}7=1 is a resolution from B of  I2} of  the 
OMP L~e(H1 | 1-12). 

5p projects H onto Me parallel to NQ. 
6A subset L o of an OMP L is a sub OMP of L if (i) 0, leLo; (ii) aJ-~Lo if a~Lo; 
(iii) a v b~L o ( v taken in L) if a .1_ b, a, b~Lo. 
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Proof. Let ~eH1, ~bEH2, then 

P249 | ~k = ~ PeP/~a | B+Bjt~ = ~ P~q~ | B2+O = Z Pe(a | Be~b = P(a | O 
i,j i i 

so that p 2 =  p. 
Since I = 1 1 | 1 7 4  we conclude that I - P =  

2 n= 1 (11 -- Pi ) | Bi E Lo. 
We claim that if P, Q ~Lo, P = ~7=1 P~ | Be and Q = ~7=, Q/|  cj, 

we have P < Q iff P~ < Qj whenever BeCj # 02. Indeed, let P < Q and 
Be o Cjo ~ 02. Then B~o Cjo = B~o ^ Cjo , and 

Mpto^ Qj ~ = MBtoC~Mcso 

For 

dP~Meio, ~keMB+oCnMcyo, O ~ 0  

we have P~ | 0 = q5 | ~, so that Qq5 | ~b = q5 | @ and 

o = II(Q - P ) ~  | O II = = II(QJo - Pio) | BioCjo~ | O II = 

= IIQJor - eeo~[1211~,l[ 2= IIQ+or - 4 II=ll0 II 2 

which entails 

(p ~ MQj ~ �9 

Similarly, Q• < P• entails 

NQ:o : MQjx ~ ~ Me? ~ = Net~ 

Consequently Peo < Qjo. 
Conversely, if P+ < Qj whenever BiC j ~ 02, then PQ = ~e.jPeQj| 

BeQj = ~e.j Pe | BeCj = P, and similarly QP = P. 
In addition, if P,. are mutually different, then P = ~7= ~ Pe | Bi has 

a unique representation in this form. Indeed, let P =~7=~ Pf |  
~ = l  Qj | Cj. Then P; = Qs if BeC+ # 02. Suppose now that B~oCjo ~ 02 
and choose 

Then, for any 

we have 

@ ~Mcjo 

c~ ~ Mpi ~ 

Pr |  = Y~ Qjr |  = 0+o4, |162 = P,or |  = ~ |  
J 
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and 

= E  PiQjo ~) | giCjo~l 7 PioQJo ~) | gioCjo Ip 
i 

=Pio~b | = c~ | 

which gives $ = B~o~k, i.e., 

By symmetry, 

~b ~ Mcj ~ 

Mcjo ~ Ms,o 

so that Cio = Bjo. 
Therefore, if P I Q, there are representations of P and Q of the forms 

P = ~7= 1 Pi | Bi and Q = )-'.7= l Qi | Bi, Pi _L Qi (for which we use refine- 
ments of resolutions of /2  in B, if necessary), so that 

P + Q = ~ (P, + Q~) e Bi = ~ (ei v Qi) | Bi = e v a 
i = 1  i=l 

Finally, the mapping H: ~7= 1/~i " Bi ~-~ ~7= 1 Pi | Bi is the monomor- 
phism in question from L[B]* onto Lo. �9 

12. D-POSETS AND QUANTUM MEASUREMENTS 

According to Busch et al. (1991), in the traditional Hilbert space 
approach, a measurement of an observable x (a POV-measure, in general) 
of a physical system 6e described by a Hilbert space H~  is a quintuplet 
~ / =  (Hal, x~ ,  T~c,f, V), where H~  is a Hilbert space of a measuring 
apparatus ~ ,  x~r is a pointer observable (a POV-measure on H~,), T~, is an 
initial state of ~r f is a pointer function, that is, a measurable function 
f :  f~ ~ fl~, which correlates the value spaces (f~, ~-) and ( ~ , ,  ~-~,) of x and 
x~,, and V: T(H~ | Hd) is a trace preserving positive linear transforma- 
tion of the trace-class operators T(H~ |162 of the composite system 
:T + ~r satisfying the following two requirements: 
The first one is as follows: 

tr(Tx(F)) = t r [ ~ , ( V ( T |  T~:))(x~(f-~(F)))] (12.1) 

for any value set F e ~  and for all possible initial states TaT(H~:):-. Here 
:I~(V(T| T~/)) denotes the reduction of the final state of 6 ~ + ~r to ~1 
via relative trace. A quintuplet , / /sat isfying (12.1) is  called a premeasure- 
ment. 
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The second basic requirement for the quintuplet (H~,, x~,, T~,,f, V) to 
qualify as an x measurement is the objectification requirement: the mea- 
surement should lead to a definite result. This condition is satisfied if x g  is 
a classical observable, i.e., a PV-measure 7 which commutes with all other 
observables of d .  

If  also the equation 

tr(Tx(r)) = t r ( ~ e ( V ( T  | T~e))(x(F)) 

is satisfied for all F e ~  and all Te T(Hr the measurement J r  is called 
a first-kind measurement. 

All the features of  a measurement de' that pertain to the object system 
5 ~ are summarized in the instrument I ~  of  the measurement J [ .  The 
instrument I~r is defined as an operation-valued measure I~,: ~ 
L~(T(H~)) + [where s + is the set of  all operations, i.e., positive 
linear transformations of  T(H~)], defined by 

I~ (F)T  = ~ ( V ( T  | T~r . I |  x ~ ( f -  l(r)) 

for all F ~ ,  TET(H~).  Here Yls~(V(T| T~r means the reduction of  the 
final state V(T|  T~) of 5~ + d  to the subsystem 5g. The instrument 
reproduces the observable x via the equations 

tr(Tx(F)) = tr(I~, (F)T) 

for all F e ~ ,  Te  T(H~)i ~ . Further, it gives the nonnormalized final states 
I~ (F)T  of  5 a on the condition that the measurement leads to a result in F. 

Two measurements are called equivalent if the corresponding instru- 
ments are equal. 

We note that the notion of an instrument can be defined independently 
of measurement as an operation-valued measure with some characteristic 
properties (Davies, 1976; Davies and Lewis, 1970; Luczak, n.d.). 

A measurement J / ( o r  the corresponding instrument I~t) is repeatable 
if 

tr(I~t (E)(I~t (F) T)) = t r ( I~ (E c~ F)  T) 

for all E, F e ~  and all T ~ T ( H r  
Following the ideas in Pulmannovfi (1993a,b, 1994), we will refor- 

mulate basic definitions of  measurements in the form of  Boolean powers of  
D-posers. We will assume that a quantum system 5# is described by a 
D-a-poset and a measuring apparatus ~ is described by a Boolean algebra 
B. To describe the coupled system 5p + d ,  we may choose either the 
Boolean power L[B] (if B is complete) or the bounded Boolean power 

7That is, a POV-measure whose range consists only of orthogonal projections. 
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L[B]*. At this stage, it is difficult to see which of these approaches is more 
appropriate. L[B]* is simpler, but L[B] in the case of  discrete measurement 
(i.e., if B is atomic) is a D-a-poset, while in general, L[B] and L[B]* are 
only D-posets. In both approaches, the basic definitions of a measurement 
are similar. 

As a physical state space ~ of ~ + d we will consider the convex hull 
of the set of all product states, that is, the set of all elements of the form 
~ i a i m ; |  where 0~t are positive numbers with sum 1 , m e ~ L ,  # ~ s ,  
where ~/~ is a convex set of a-additive states on L and ~B is a convex set 
of  a-additive (completely additive) states on B is ~ + ~r is described by 
L[B]* (L[B]). Assume that we want to measure an observable x on 5". Let 
(s ~ )  be the value space of x. We choose a measuring apparatus d 
described by B and a a-observable x~r on B (a so-called pointer observable). 
If  the value space (f1~r f f ~ )  of  x~r is different from (fl, i f ) ,  choose a 
measurable function f :  s ~ ~ d  (a pointer function). If the initial state of 
is m and we choose m~r as the initial state of  d ,  then the initial state of 

+ d will be the product state m | m~. The measurement means an 
interaction between 5" and ~r which results in a change of the state of  the 
coupled system. This change will be described by a convexity-preserving 
transformation V: ~ ~ ~ .  If  V(m | m~,) is the final state of  ~ + d after 
the measurement, then the restrictions V(m |  ~ and m |  o t3 
uniquely describe the final states of ~ and d ,  respectively, where 2 and fl 
are defined in Theorem 10.1. A quintuplet Jg = (B, x~,  m d , f ,  V) will be 
classified as a measurement of  x if 

m(x(F)) = V(m | m~,) o fl(x~(f-'(F))) 

for all F e ~  and all initial states m of ~ .  We note that since B is a Boolean 
algebra, there are no problems with the objectification. 

If  also the equality 

m(x(F)) = V(m | md) o 2(x(F)) 

is satisfied for all F e f f  and all initial states m of 5r the measurement ~ '  
is called a measurement of the first kind. 

The transformation V can be extended by homogeneity to the positive 
cone K(~)  = {as: s s ~ ,  a > 0}, and then by linearity to K(~)  - K(~).  

For every measurement all, an instrument is defined by 

I~(F)(m) = V(m | m~)~(x~( f -  I(F))  ) o /], 

for all F ~  and all states m ~ L .  It is easy to see that I~(F)(m) is a 
a-additive measure on L and the state obtained after normalization can be 
interpreted as the final state of 5P after measurement under the condition 
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that the measurement leads to a result in the set F. The instrument 
reproduces the observable x via the equalities 

I~(F)(m)(1L) = Z(m | mA)~(x~,(f-i(F)) ) o ~( 1L ) 

= V(m |  ^ 2(1L) ) 

= m(x(F)) 

for all F ~  and all m ~ r .  
A measurement Jg is called repeatable if for all E, F ~  and all m, 

I~g (E)( I ~ (F)(m))( 1 L) = I dt (E n F)(m)( 1 L) 

Two measurements ~ and J /z  are equivalent if the corresponding 
instruments are equal, i.e., 

I~g, (r)(m) = I g 2 (F)(m) 

for all F ~  and all m. 
The basic result is the following one: 

Theorem 12.1. Let a physical system 50 be described by a D-a-poset L 
and let d be a measuring apparatus. 

(i) If  5 p + d is described by L[B]* for a Boolean a-algebra B, then 
for every regular a-observable x on L, there exists a measurement. 

(ii) If 5g + d is described by LIB] for some complete Boolean algebra 
B, then for every regular a-observable x whose range ~(x)  satisfies the 
c.c.c, condition [i.e., every chain 8 in ~(x)  is at most countable] there exists 
a measurement. 

Proof. Let (~, ~-) be the value space o fx .  Let JV" = { E ~ :  x(E) = 0} 
be the a-ideal of  x-null sets in ~ and let B = ~ / J V .  Now B is isomorphic 
with ~(x) ,  and hence if ~(x)  satisfies c.c.c., B is a complete Boolean 
algebra, and in addition every a-additive state on B is completely additive. 
Let E ~ [E] be the canonical homomorphism which assigns to every 
E e l -  the corresponding equivalence class [El in B. Define the observable 
x~,: F ~  B by xd (E)  = [E], and let the pointer func t ion fbe  the identity on 
fL Let (Ei)i be any countable partition of  f~ consisting of elements of o~. 
Let (m;)~ be any sequence of  states on L. Let md  be an arbitrarily chosen 
state on B, and define a mapping V by 

V(m | m~)  = ~ m(x(Ei ))m i | #i 
i 

8A subset M of L is a chain if for any pair of a, b of M we have either a < b or b < a. 
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where ktt is the state on B defined by 

m(x(E c~ Ei )) 
~ , ( [ E ] )  - 

m(x(Ei)) 

for every i. Now extend V by convexity to whole ~ .  
It is easy to see that the quintuplet (B, x~ ,  m~,,f, V) is a measurement 

of x. �9 

Let us recall some basic properties of  an instrument. 
Let Jg = (B, x~,, m~,,f, V) be a measurement of  an observable x with 

value space (tq, ~ )  and let I~  be the corresponding instrument. For  every 
m ~ L ,  

I~(f l)(m) = V(m | m~)  o 2 

and for any G ~ and any m ~ t ,  

I~(G)(m) = V(m | m~)p(bc ) o 2 

where we put b G = x ~ ( f - l ( G ) ) .  Since V(m | m~)  is a convex combination 
of  product states, the mapping I ~  ( .)(m):  ~ --, ~z. is a-additive for every 
fixed m e ~ t ,  that is, 

for-every sequence (F,.);~ of disjoint sets from ~ .  Similarly as in Pulman- 
novfi (1994), the first-kind condition can be rewritten in the form 

m(x(E)) = I~,(n)(m)(x(E)) 

which is equivalent to 

I ~ (E)(I.~ (EC)(m))(1) = I ~ (EC)(I,~ (E)(m))(1) (12.2) 

for any m s N L  and all Eeo~  [the proof  is the same as in Pulmannovfi 
( 1994)1. 

Now let us consider the repeatability condition 

I~  (E)(I,~ (F)(m))( 1 ) = I.K (E n f)(m)(1) 

for all m ~ L  and all E, F e ~ .  
This condition is equivalent to 

I~(E")(I~(E)(m))(1) = 0 (12.3) 

for any m and all E. Comparing (12.2) and (12.3), we obtain the following 
result. 

Theorem 12.2. A repeatable measurement is of the first kind. 
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13. C O N C L U D I N G  REMARKS 

A Boolean power is a special kind of tensor product of  two quantum 
structures (or thomodular  posets, orthoalgebras, D-posets) if one of  them 
happens to be a Boolean algebra. The problems with the existence of an 
appropriate tensor product  of  or thomodular  posets (or or thomodular  
lattices) has led to the introduction of orthoalgebras, where a tensor 
product  exists in the case that unital sets of  states exist (Foulis and 
Bennett, n.d.). D-posets are even more general structures than orthoalge- 
bras. Their advantage in comparison with orthoalgebras is that they 
include the event structure on a Hilbert space, described by the set of  
effects, and reflect the "fuzzy approach"  to quantum mechanics. It  is an 
open question whether a tensor product of  D-posets exists. 

The formulation of some basic properties of  quantum measurements 
given in Section 12 is an at tempt at a more general theory of  measure- 
ments, where the measuring apparatus is described as a classical object. In 
contrast  with previous attempts (Pulmannovh, 1993a,b, 1994), unsharp 
observables also are included. 
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